An Integrated CMOS Micromechanical Resonator High- Oscillator
نویسندگان
چکیده
A completely monolithic high-Q oscillator, fabricated via a combined CMOS plus surface micromachining technology, is described, for which the oscillation frequency is controlled by a polysilicon micromechanical resonator with the intent of achieving high stability. The operation and performance of micromechanical resonators are modeled, with emphasis on circuit and noise modeling of multiport resonators. A series resonant oscillator design is discussed that utilizes a unique, gain-controllable transresistance sustaining amplifier. We show that in the absence of an automatic level control loop, the closed-loop, steady-state oscillation amplitude of this oscillator depends strongly upon the dc-bias voltage applied to the capacitively driven and sensed resonator. Although the high-Q of the micromechanical resonator does contribute to improved oscillator stability, its limited power-handling ability outweighs the Q benefits and prevents this oscillator from achieving the high short-term stability normally expected of high-Q oscillators.
منابع مشابه
An Integrated CMOS Micromechanical Resonator High- Q Oscillator - Solid-State Circuits, IEEE Journal of
A completely monolithic high-Q oscillator, fabricated via a combined CMOS plus surface micromachining technology, is described, for which the oscillation frequency is controlled by a polysilicon micromechanical resonator with the intent of achieving high stability. The operation and performance of micromechanical resonators are modeled, with emphasis on circuit and noise modeling of multiport r...
متن کاملCMOS Micromechanical Resonator Oscillator
A completely monolithic high-Q oscillator, fabricated via a combined CMOS plus surface micromachining technology, is described, for which the oscillation frequency is controlled by a polysilicon micromechanical resonator to achieve stability and phase noise performance comparable to those of quartz crystal oscillators. It is shown that the closed-loop, steady-state oscillation amplitude of this...
متن کاملMicromechanical Resonators for Oscillators and Filters
Fully monolithic, high-Q, micromechanical signal processors are described. A completely monolithic high-Q oscillator, fabricated via a combined CMOS plus surface micromachining technology, is detailed, for which the oscillation frequency is controlled by a polysilicon micromechanical resonator to achieve high stability. The operation and performance of μmechanical resonators are modelled, with ...
متن کاملFrom MEMS Devices to Smart Integrated Systems
The smart integrated systems of tomorrow would demand a combination of micromechanical components and traditional electronics. On-chip solutions will be the ultimate goal. One way of making such systems is to implement the mechanical parts in an ordinary CMOS process. This procedure has been used to design an oscillator consisting of a resonating cantilever beam and a CMOS Pierce feedback ampli...
متن کاملIntegrated Micromechanical RF Circuits for Software-Defined Cognitive Radio
An evaluation of the potential for MEMS technologies to realize the RF front-end frequency gating spectrum analyzer function needed by true software-defined cognitive radios is presented. Here, the relevant MEMS technologies include vibrating micromechanical resonators that exhibit record on-chip Q‘s at GHz frequencies; medium-scale integrated micromechanical circuits that implement on/off swit...
متن کامل